Goal

• The class is going to look at the application, use and limitations of the common colormetrics used by the modern hazmat team.

Objectives

- · List the purpose of using colormetrics
- Discuss the NFPA 470 requirements and Risk Based Response
- Define a systematic process for the use of colormetrics
- 10.2.1.2 Identify the application, use and limitations of the following colormetrics
 - Water Paper
 - pH Paper
 - KI Paper
 - F Paper
 - M-8 Paper
 - Detector Tubes
- · Given both solid and liquid samples, classify them using colormetrics

Why Colormetrics

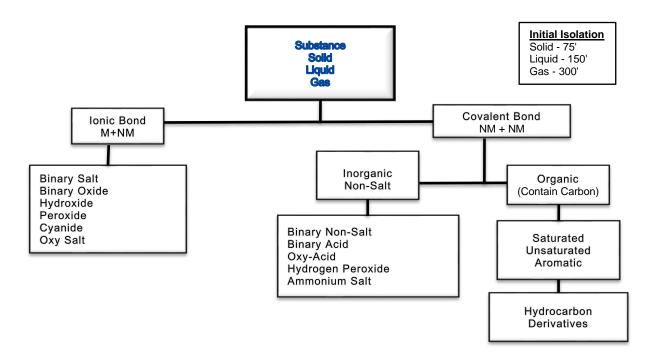
- Readily available
- · Easy to use
- Low cost
- Protection of electronic equipment
- Great information

NFPA Requirements

- 7.2.1.3.4 The hazardous materials technician shall identify the capabilities and limiting factors associated with the selection and use of the following monitoring equipment, test strips, and reagents:
- (3) Colorimetric indicators: colorimetric detector tubes, indicating papers (pH paper and meters), reagents, test strips

These factors include but not limited to:

- Operation
- Calibration
- Response time
- Detection range
- Relative response
- Sensitivity
- Selectivity
- Inherent safety
- Environmental conditions
- Nature of hazard


Risk Based Response

The systematic process based upon facts, science and the circumstances of the incident by which responders analyze a problem involving a hazardous material/weapon of mass destruction (WMD), assess the hazards, and consequences, develop an incident action plan, and evaluate the effectiveness of the plan.

(NFPA 470,2022)

Systematic Process

- Isolaton Distance
- PPE
- Monitoring Equipment
- Decon

IONIC BOND (Salt)

- Ionic Bond "Transfer of Electrons"
- A metal plus a non-metal
- Mostly solid
- · Water soluble or water reactive
- Non combustible
- Tends to form caustic solutions in water
- Others may be oxidizers

Tactical Implications

COVALENT BOND (Non-Salt)

- Covalent bond -"Sharing electrons"
- Non-metal plus another non-metal
- Primarily liquids and gases
- Some water insoluble
- · Often fuels "they burn"
- · Others known for their toxicity

Temperature of the Material

- · What can affect the temperature of the material?
 - Ambient temperature
 - Color of the container, or medium spilled upon
 - Pressure
 - Chemical reactions
 - Radiated heat

Infrared Thermometers

- Only measure surface temperatures and NOT the internal temperature
- Can be temporarily affected by frost, moisture, dust, fog, smoke or other particles in the air
- Do not "see through" glass, liquids or other transparent surfaces
- A 12:1 ratio will measure the temperature of a 1" diameter circle of surface area from 12" away, a 2" diameter circle of surface area from 24" away, and so on
- Hold the lens or opening of your infrared thermometer directly perpendicular to the surface being measured.

Tactical Implications

Bear Claw / Tiger Paw

Water Paper

- Use
 - Indicates the presence of water
 - Corrosives are concentrated with water
- Technology
 - Changes color from light blue to deep blue
- Limitations
 - Methanol will test positive on the paper
- Action
 - Use in claw
 - Use Raman first, may mask FTIR response

pH Paper

- Use
 - to determine Acid vs Base
- Technology
 - Also called litmus paper
 - A Universal Indicator is a pH indicator composed of a solution of several compounds that exhibits several smooth color changes over a pH range from 1-14 to indicate the acidity or alkalinity of solutions
- Limitations
 - Can be bleached out by strong oxidizers
 - Wet vs Dry
 - Cannot be used to determine concentration
 - Bleach chemicals can bleach out the paper
- Action
 - Read leading edge
 - Use in claw
 - Should have positive response on Water Paper
 - Use Raman first, water may mask FTIR response

Starch Paper (aka KI paper)

- Use
 - Indicates Oxidizers
- Technology
 - Paper impregnated with potassium iodide (KI) and starch for the detection of nitrite and free chlorine. Color reaction: white to blue-violet.
- Limitations
 - pH < 1
 - All oxidizing reagents, which can liberate iodine from potassium iodide (KI), also show a positive reaction.
- Action
 - Use in claw
 - Nitrite and nitrates will not register unless the pH is <1
 - Activate paper with concentrated Phosphoric Acid for use

Fluoride Test Paper

- Use
 - Rapid determination of fluoride ions. Used to identify Anhydrous Hydrogen Fluoride gas, or liquids containing Hydrofluoric Acid
- Technology
 - In the presence of fluoride ions, the test paper shows a yellowish-white spot against a pink-red background.
- Interferences:
 - Chlorates and bromates result in a whitening of the test paper.
 - Sulfate in very large amounts also results in a whitening. The sulfate interference can be eliminated by the addition of barium chloride.
 - Oxcalic Acid will test positive on the F paper
- Action
 - Material must have a pH <1
 - Anhydrous HF will test positive on F paper and wet pH papers
 - Concentrated Phosphoric Acid will test positive on F paper, pH paper, and water paper

M-8 Paper

- Use
 - The paper should be used to detect liquid contamination by placing the paper in contact with the suspected surface. A color change similar to that shown on the cover indicates the presence of chemical warfare agents.
 - Can be used to classify different chemical families, but this is not definitive

Technology

- Paper has three different dies which change color, classifying agent type
 - Gold G Agent
 - Red Blister Agent
 - Dark Blue V Agent
- Hydrophobic
- Can be used to classify different chemical families

Limitations

- Designed for CWA agents only
- Color change can indicate different chemical family

Use

- Use in claw
- Give a few seconds for the sample to soak into the paper

Colormetric Tubes

- Use
 - to classify chemical family
- Technology
 - Glass tube filled with a chemical indicator
 - Chemical indicator inside the tube changes color in response to certain chemical(s)
- Limitations
 - Cross interferences
 - Sampling time
 - Accuracy
 - Concentration ranges
 - Shelf life
- Action
 - Use other colormetrics, electronic responses or lack of responses, anticipated materials to select tube(s)

Sampling Solids

- Wearing full Personal Protective Equipment (PPE), collect a small amount of material, approximately 3-5 ml with the frosted scoop, and transfer into one of the provided vials.
- Sample vial opening for vapor pH.
- Using the provided 0.15 cc micro spoon, place the sample in the middle of a watch glass.
- Apply a drop of water onto the material and observe for any reaction or mixing. A
 reaction may also be measured with the temp gun holding it perpendicular to the disk
 and approximately 1/4 inch above, and squeezing the trigger for 2-3 seconds
- Observe for a steady temperature rise or fall. Caution: If water reactive, a toxic, flammable, and/or corrosive gas may be produced!
- Observe the water mixture for water solubility. Does the material dissolve completely, partially, or not at all.
- Touch pH and KI indicating papers to the solution and allow the material to wick up the paper. If the pH of the sample is <1 test with the F paper too.
- Look for the color change on the leading edge.
- If there is no change in the papers, activate the KI and F papers by placing 1-2 drops of concentrated Phosphoric Acid solution on each paper. Sprinkle a small amount of the solid on the wetted papers
- A change in the KI paper would indicate a possible nitrate/ite salt. A change in the F
 paper would indicate a possible fluoride salt.

Sampling Liquids

- Wearing full Personal Protective Equipment (PPE), after doing initial monitoring collect a 1-3 mL sample of the material using the provided pipette. Place the material into the provided vial.
- Remove the material to a safe location, open the vial and pass both wet and dry pH paper over the mouth of the vial and observe for a change.
- If no change, check vapors with PID and LEL detectors. Record meter response(s).
- In the watch glass, place a small strip of the provided indicating papers, pH, F, M-8, Water. Make sure the pH paper is moistened. An accurate pH can only be determined in the presence of water.
- Place a small drop of the material on each paper and observe for the appropriate positive indication.

Contact Information

FireHouse Training & Consulting
Richard Dufek
PO Box 864
Westfield, IN 46062
317-432-8184
rcdufek@gmail.net